Example
Tools
13mm (1/2”) Drill Circular Saw
640W + 800W = 1440W
Appliances and Electronics
Desktop
Signal Computer
Relay with Large
Refrigerator Table Fan Tower LCD Monitor
540W + 150W + 500W + 250W = 1440W
1440 watts ÷ 48V = 30 DC Amps
30 DC Amps × 5 Hrs. Runtime
× 1.2 Inefficiency Rating = 180 Amp-Hours
180 Amp-Hours ÷ 23 Amps
Inverter/Charger Rating = 7.8 Hours Recharge
5
3. Battery
3.1.1 Match Battery Amp-Hour Capacity to Your Application
Select a battery or system of batteries that will provide your Inverter/Charger with proper DC voltage and an adequate amp-
hour capacity to power your application. Even though Tripp Lite Inverter/Chargers are highly efficient at DC-to-AC inversion,
their rated output capacities are limited by the total amp-hour capacity of connected batteries and the support of your
vehicle’s alternator if the engine is kept running. Note: The minimum recommend battery capacity for the APSX4048SW is 50
amp-hours at 48VDC.
• STEP 1) Determine Total Wattage Required
Add the wattage ratings of all equipment you will connect
to your Inverter/Charger. Wattage ratings are usually
listed in equipment manuals or on nameplates. If your
equipment is rated in amps, multiply that number times AC
utility voltage to estimate watts. (Example: a drill requires
2.8 amps. 2.8 amps × 230 volts = 640 watts.)
NOTE: Your Inverter/Charger will operate at higher efficiencies at about
75% - 80% of nameplate rating.
• STEP 2) Determine DC Battery Amps Required
Divide the total wattage required (from step 1, above)
by the nominal battery voltage to determine the DC amps
required.
• STEP 3) Estimate Battery Amp-Hours Required
Multiply the DC amps required (from step 2, above) by
the number of hours you estimate you will operate your
equipment exclusively from battery power before you have
to recharge your batteries with utility- or generator-supplied
AC power. Compensate for inefficiency by multiplying this
number by 1.2. This will give you a rough estimate of how
many amp-hours of battery power (from one or several
batteries) you should connect to your Inverter/Charger.
NOTE: Battery amp-hour ratings are usually given for a 20-hour discharge
rate. Actual amp-hour capacities are less when batteries are discharged
at faster rates. For example, batteries discharged in 55 minutes provide
only 50% of their listed amp-hour ratings, while batteries discharged in 9
minutes provide as little as 30% of their amp-hour ratings.
• STEP 4) Estimate Battery Recharge Required, Given
Your Application
You must allow your batteries to recharge long enough to
replace the charge lost during inverter operation or else
you will eventually run down your batteries. To estimate
the minimum amount of time you need to recharge your
batteries given your application, divide your required
battery amp-hours (from step 3, above) by your Inverter/
Charger’s rated charging amps.